Send to

Choose Destination
Vaccine. 2011 Jan 10;29(3):593-8. doi: 10.1016/j.vaccine.2010.06.040. Epub 2010 Jun 25.

Attenuated Francisella asiatica iglC mutant induces protective immunity to francisellosis in tilapia.

Author information

Department of Pathobiological Sciences, Louisiana State University (LSU)-School of Veterinary Medicine, Skip Bertman Dr., Baton Rouge, LA 70803, USA.


Francisella asiatica is a Gram-negative, facultative intracellular bacteria that causes fish francisellosis. Fish francisellosis is a severe sub-acute to chronic granulomatous disease with high mortalities and high infectivity rates in cultured and wild fish. To date, there is no approved vaccine for this widespread emergent disease. The goal of this study was to characterize the efficacy of a defined F. asiatica mutant (ΔiglC) as a live attenuated vaccine against subsequent immersion challenge with the wild-type (WT) organism. In previous work, the ΔiglC was found to be attenuated upon intraperitoneal injection and immersion challenges. In vitro, the ΔiglC exhibited reduced growth in tilapia head-kidney derived macrophages, and was significantly attenuated (p<0.001) as demonstrated by cytopathogenic and apoptosis assays. In this study, the ΔiglC was tested to determine its ability to protect tilapia against challenge with high doses (lethal dose 80) of WT bacteria. Naïve tilapia vaccinated by immersion with a suspension of the ΔiglC and subsequently challenged with WT F. asiatica were protected (90% mean percent survival) from the lethal challenges. F. asiatica-specific antibodies produced in response to immunization with the ΔiglC were subsequently found to protect naïve tilapia against high-dose F. asiatica challenge in passive immunization experiments. Significant protection (p<0.001) was obtained when fish were passively immunized and challenged with 10(4) and 10(5)CFU/fish of WT F. asiatica; but not when challenged with 10(6)CFU/fish. This is the first report of a defined live attenuated strain providing protection against F. asiatica in fish.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center