Format

Send to

Choose Destination
Nanoscale Res Lett. 2009 Jan;4(1):39-46. Epub 2008 Nov 18.

In situ Polymerization of Multi-Walled Carbon Nanotube/Nylon-6 Nanocomposites and Their Electrospun Nanofibers.

Abstract

Multiwalled carbon nanotube/nylon-6 nanocomposites (MWNT/nylon-6) were prepared by in situ polymerization, whereby functionalized MWNTs (F-MWNTs) and pristine MWNTs (P-MWNTs) were used as reinforcing materials. The F-MWNTs were functionalized by Friedel-Crafts acylation, which introduced aromatic amine (COC(6)H(4)-NH(2)) groups onto the side wall. Scanning electron microscopy (SEM) images obtained from the fractured surfaces of the nanocomposites showed that the F-MWNTs in the nylon-6 matrix were well dispersed as compared to those of the P-MWNTs. Both nanocomposites could be electrospun into nanofibers in which the MWNTs were embedded and oriented along the nanofiber axis, as confirmed by transmission electron microscopy. The specific strength and modulus of the MWNTs-reinforced nanofibers increased as compared to those of the neat nylon-6 nanofibers. The crystal structure of the nylon-6 in the MWNT/nylon-6 nanofibers was mostly gamma-phase, although that of the MWNT/nylon-6 films, which were prepared by hot-pressing the pellets between two aluminum plates and then quenching them in icy water, was mostly alpha-phase, indicating that the shear force during electrospinning might favor the gamma-phase, similarly to the conventional fiber spinning.

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center