Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1991 Jun 25;30(25):6216-23.

Investigation of the enzymatic mechanism of yeast orotidine-5'-monophosphate decarboxylase using 13C kinetic isotope effects.

Author information

  • 1Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill 27599-7260.

Abstract

Orotidine-5'-monophosphate decarboxylase (ODCase) from Saccharomyces cerevisiae displays an observed 13C kinetic isotope effect of 1.0247 +/- 0.0008 at 25 degrees C, pH 6.8. The observed isotope effect is sensitive to changes in the reaction medium, such as pH, temperature, or glycerol content. The value of 1.0494 +/- 0.0006 measured at pH 4.0, 25 degrees C, is not altered significantly by temperature or glycerol, and thus the intrinsic isotope effect for the reaction is apparently being observed under these conditions and decarboxylation is almost entirely rate-determining. These data require a catalytic mechanism with freely reversible binding and one in which a very limited contribution to the overall rate is made by chemical steps preceding decarboxylation; the zwitterion mechanism of Beak and Siegel [Beak, P. & Siegel, B. (1976) J. Am. Chem. Soc. 98, 3601-3606], which involves only protonation of the pyrimidine ring, is such a mechanism. With use of an intrinsic isotope effect of 1.05, a partitioning factor of less than unity is calculated for ODCase at pH 6.0, 25 degrees C. A quantitative kinetic analysis using this result excludes the possibility of an enzymatic mechanism involving covalent attachment of an enzyme nucleophile to C-5 of the pyrimidine ring. The observed isotope effect does not rise to the intrinsic value above pH 8.5; instead, the observed isotope effects at 25 degrees C plotted against pH yield an asymmetric curve that at high pH plateaus at about 1.035. These data, in conjunction with the pH profile of Vmax/km, fit a kinetic model in which an enzyme proton necessary for catalysis is titrated at high pH, thus providing evidence for the catalytic mechanism of Beak and Siegel (1976).

PMID:
2059628
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center