Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci Methods. 2010 Aug 15;191(1):101-9. doi: 10.1016/j.jneumeth.2010.05.020. Epub 2010 Jun 2.

Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks.

Author information

1
Department of Information Technologies and Communications, University of La Coruña, Campus Elviña, 15071 A Coruña, Spain. lguo@udc.es

Abstract

About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.

PMID:
20595035
DOI:
10.1016/j.jneumeth.2010.05.020
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center