Format

Send to

Choose Destination
Biochemistry. 2010 Aug 10;49(31):6761-70. doi: 10.1021/bi1006404.

An analysis of the solution structure and signaling mechanism of LovK, a sensor histidine kinase integrating light and redox signals.

Author information

1
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA.

Abstract

Flavin-binding LOV domains are broadly conserved in plants, fungi, archaea, and bacteria. These approximately 100-residue photosensory modules are generally encoded within larger, multidomain proteins that control a range of blue light-dependent physiologies. The bacterium Caulobacter crescentus encodes a soluble LOV-histidine kinase, LovK, that regulates the adhesive properties of the cell. Full-length LovK is dimeric as are a series of systematically truncated LovK constructs containing only the N-terminal LOV sensory domain. Nonconserved sequence flanking the LOV domain functions to tune the signaling lifetime of the protein. Size exclusion chromatography and small-angle X-ray scattering (SAXS) demonstrate that the LOV sensor domain does not undergo a large conformational change in response to photon absorption. However, limited proteolysis identifies a sequence flanking the C-terminus of the LOV domain as a site of light-induced change in protein conformation and dynamics. On the basis of SAXS envelope reconstruction and bioinformatic prediction, we propose this dynamic region of structure is an extended C-terminal coiled coil that links the LOV domain to the histidine kinase domain. To test the hypothesis that LOV domain signaling is affected by cellular redox state in addition to light, we measured the reduction potential of the LovK FMN cofactor. The measured potential of -258 mV is congruent with the redox potential of Gram-negative cytoplasm during logarithmic growth (-260 to -280 mV). Thus, a fraction of LovK in the cytosol may be in the reduced state under typical growth conditions. Chemical reduction of the FMN cofactor of LovK attenuates the light-dependent ATPase activity of the protein in vitro, demonstrating that LovK can function as a conditional photosensor that is regulated by the oxidative state of the cellular environment.

PMID:
20593779
PMCID:
PMC2915561
DOI:
10.1021/bi1006404
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center