Sound localization skills in children who use bilateral cochlear implants and in children with normal acoustic hearing

Ear Hear. 2010 Oct;31(5):645-56. doi: 10.1097/AUD.0b013e3181e50a1d.

Abstract

Objectives: To measure sound source localization in children who have sequential bilateral cochlear implants (BICIs); to determine whether localization accuracy correlates with performance on a right-left discrimination task (i.e., spatial acuity); to determine whether there is a measurable bilateral benefit on a sound source identification task (i.e., localization accuracy) by comparing performance under bilateral and unilateral listening conditions; and to determine whether sound source localization continues to improve with longer durations of bilateral experience.

Design: Two groups of children participated in this study: a group of 21 children who received BICIs in sequential procedures (5 to 14 years) and a group of 7 typically developing children with normal acoustic hearing (5 years). Testing was conducted in a large sound-treated booth with loudspeakers positioned on a horizontal arc with a radius of 1.2 m. Children participated in two experiments that assessed spatial hearing skills. Spatial hearing acuity was assessed with a discrimination task in which listeners determined whether a sound source was presented on the right or left side of center; the smallest angle at which performance on this task was reliably above chance is the minimum audible angle. Sound localization accuracy was assessed with a sound source identification task in which children identified the perceived position of the sound source from a multiloudspeaker array (7 or 15); errors are quantified using the root mean square (RMS) error.

Results: Sound localization accuracy was highly variable among the children with BICIs, with RMS errors ranging from 19 to 56 degrees . Performance of the normal hearing group, with RMS errors ranging from 9 to 29 degrees was significantly better. Within the BICI group, in 11 of 21 children, RMS errors were smaller in the bilateral versus unilateral listening condition, indicating bilateral benefit. There was a significant correlation between spatial acuity and sound localization accuracy (R = 0.68, p < 0.01), suggesting that children who achieve small RMS errors tend to have the smallest minimum audible angles. Although there was large intersubject variability, testing of 11 children in the BICI group at two sequential visits revealed a subset of children who show improvement in spatial hearing skills over time.

Conclusions: A subset of children who use sequential BICIs can acquire sound localization abilities, even after long intervals between activation of hearing in the first- and second-implanted ears. This suggests that children with activation of the second implant later in life may be capable of developing spatial hearing abilities. The large variability in performance among the children with BICIs suggests that maturation of sound localization abilities in children with BICIs may be dependent on various individual subject factors such as age of implantation and chronological age.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acoustic Stimulation / methods
  • Adolescent
  • Child
  • Child, Preschool
  • Cochlear Implants*
  • Female
  • Hearing / physiology*
  • Hearing Loss, Sensorineural / rehabilitation
  • Hearing Loss, Sensorineural / therapy*
  • Hearing Tests / methods
  • Humans
  • Male
  • Sound Localization / physiology*