Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Microbiol. 2010 Aug;13(4):459-65. doi: 10.1016/j.mib.2010.05.015. Epub 2010 Jun 28.

Parasites in motion: flagellum-driven cell motility in African trypanosomes.

Author information

1
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Drive, Los Angeles, CA 90095, USA. kenthill@mednet.ucla.edu

Abstract

Motility of the sleeping sickness parasite, Trypanosoma brucei, impacts disease transmission and pathogenesis. Trypanosome motility is driven by a flagellum that harbors a canonical 9+2 axoneme, together with trypanosome-specific elaborations. Trypanosome flagellum biology and motility have been the object of intense research over the last two years. These studies have led to the discovery of a novel form of motility, termed social motility, and provided revision of long-standing models for cell propulsion. Recent work has also uncovered novel structural features and motor proteins associated with the flagellar apparatus and has identified candidate signaling molecules that are predicted to regulate flagellar motility. Together with earlier inventories of flagellar proteins from proteomic and genomic studies, the stage is now set to move forward with functional studies to elucidate molecular mechanisms and investigate parasite motility in the context of host-parasite interactions.

Comment in

PMID:
20591724
PMCID:
PMC3225338
DOI:
10.1016/j.mib.2010.05.015
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center