Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2010 Aug 15;21(16):2894-904. doi: 10.1091/mbc.E10-02-0157. Epub 2010 Jun 29.

Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast.

Author information

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA.


We used quantitative confocal microscopy to measure the numbers of 16 proteins tagged with fluorescent proteins during assembly and disassembly of endocytic actin patches in fission yeast. The peak numbers of each molecule that accumulate in patches varied <30-50% between individual patches. The pathway begins with accumulation of 30-40 clathrin molecules, sufficient to build a hemisphere at the tip of a plasma membrane invagination. Thereafter precisely timed waves of proteins reach characteristic peak numbers: endocytic adaptor proteins (approximately 120 End4p and approximately 230 Pan1p), activators of Arp2/3 complex (approximately 200 Wsp1p and approximately 340 Myo1p) and approximately 300 Arp2/3 complexes just ahead of a burst of actin assembly into short, capped and highly cross-linked filaments (approximately 7000 actins, approximately 200 capping proteins, and approximately 900 fimbrins). Coronin arrives last as all other components disperse upon patch internalization and movement over approximately 10 s. Patch internalization occurs without recruitment of dynamins. Mathematical modeling, described in the accompanying paper (Berro et al., 2010, MBoC 21: 2803-2813), shows that the dendritic nucleation hypothesis can account for the time course of actin assembly into a branched network of several hundred filaments 100-200 nm long and that patch disassembly requires actin filament fragmentation in addition to depolymerization from the ends.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center