Send to

Choose Destination
See comment in PubMed Commons below
J Enzyme Inhib Med Chem. 2010 Dec;25(6):887-92. doi: 10.3109/14756360903514156. Epub 2010 Jun 28.

Constituents of Limonia acidissima inhibit LPS-induced nitric oxide production in BV-2 microglia.

Author information

  • 1Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon, Korea.


The ethyl acetate (EtOAc) soluble fraction of the 85% ethanol (EtOH) extract of the dried bark of Limonia acidissima potently inhibited nitric oxide (NO) production in lipopolysaccharide (LPS) activated BV-2 cells, a microglial cell line. Bioassay-guided column chromatography separation afforded a new stereoisomer of neolignan, (7'E)-(7R,8S)-4-hydroxy-3,5'-dimethoxy-4',7-epoxy-8,3'-neolig-7'-en-9,9'-diyil diacetate (1), together with two known lignans, (+)-yangambin (2) and (+)-syringaresinol (3), three known triterpenoids, hederatriol (4), basic acid methyl ester (5), and 3β-hydroxyolean-12-en-11-one (6), and four known fatty acid derivatives, cascarillic acid (7), (+)-α-dimorphecolic acid (8), 8(R)-hydroxylinoleic acid (9), and (6Z,9Z,12Z)-pentadecatrienoic acid (10). The structure of the new compound 1 was elucidated by detailed analysis of spectroscopic data and circular dichroism (CD) spectroscopy. Compounds 1, 3-6, and 8-10 isolated from L. acidissima significantly reduced NO production in LPS-stimulated BV-2 microglia cells.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center