Send to

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2010 Jul 12;11(7):1856-62. doi: 10.1021/bm100374n.

Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media.

Author information

Department of Veterinary Pathology, Seoul National University, Seoul 151-742, Korea.


We have examined the effects of surface nanotopography on in vitro osteogenesis of human mesenchymal stem cells (hMSCs). UV-assisted capillary force lithography was employed to fabricate a scalable (4x5 cm), well-defined nanostructured substrate of a UV curable polyurethane polymer with dots (150, 400, 600 nm diameter) and lines (150, 400, 600 nm width). The influence of osteogenic differentiation of hMSCs was characterized at day 8 by alkaline phosphatase (ALP) assay, RT-PCR, and real-time PCR analysis. We found that hMSCs cultured on the nanostructured surfaces in osteogenic induction media showed significantly higher ALP activity compared to unpatterned PUA surface (control group). In particular, the hMSCs on the 400 nm dot pattern showed the highest level of ALP activity. Further investigation with real-time quantitative RT-PCR analysis demonstrated significantly higher expression of core binding factor 1 (Cbfa1), osteopontin (OP), and osteocalcin (OC) levels in hMSCs cultured on the 400 nm dot pattern in osteogenic induction media. These findings suggest that surface nanotopography can enhance osteogenic differentiation synergistically with biochemical induction substance.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center