Format

Send to

Choose Destination
See comment in PubMed Commons below
Trends Neurosci. 2010 Sep;33(9):424-34. doi: 10.1016/j.tins.2010.05.005. Epub 2010 Jun 18.

Serotonin: a regulator of neuronal morphology and circuitry.

Author information

1
Department of Biology, University of Virginia, 071 Gilmer Hall, P.O. Box 400328, Charlottesville, VA 22904, USA.

Abstract

Serotonin is an important neuromodulator associated with a wide range of physiological effects in the central nervous system. The exact mechanisms whereby serotonin influences brain development are not well understood, although studies in invertebrate and vertebrate model organisms are beginning to unravel a regulatory role for serotonin in neuronal morphology and circuit formation. Recent data suggest a developmental window during which altered serotonin levels permanently influence neuronal circuitry, however, the temporal constraints and molecular mechanisms responsible are still under investigation. Growing evidence suggests that alterations in early serotonin signaling contribute to a number of neurodevelopmental and neuropsychiatric disorders. Thus, understanding how altered serotonin signaling affects neuronal morphology and plasticity, and ultimately animal physiology and pathophysiology, will be of great significance.

PMID:
20561690
PMCID:
PMC2929308
DOI:
10.1016/j.tins.2010.05.005
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center