Send to

Choose Destination
See comment in PubMed Commons below
Ann Biomed Eng. 2010 Nov;38(11):3371-88. doi: 10.1007/s10439-010-0096-1. Epub 2010 Jun 17.

Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli.

Author information

Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD 20742, USA.


Articular cartilage defects have limited capacity to self-repair, and cost society up to 60 billion dollars annually in both medical treatments and loss of working days. Recent developments in cartilage tissue engineering have resulted in many new products coming to market or entering clinical trials. However, there is a distinct lack of treatments which aim to recreate the complex zonal organization of articular cartilage. Cartilage tissue withstands repetitive strains throughout an individual's lifetime and provides frictionless movement between joints. The structure and composition of its intricately organized extracellular matrix varies with tissue depth to provide optimal resistance to loading, ensure ease of movement, and integrate with the subchondral bone. Each tissue zone is specially designed to resist the load it experiences, and maximize the tissue properties needed for its location. It is unlikely that a homogenous solution to tissue repair will be able to optimally restore the function of such a heterogeneous tissue. For zonal engineering of articular cartilage to become practical, maintenance of phenotypically stable zonal cell populations must be achieved. The chondrocyte phenotype varies considerably by zone, and it is the activity of these cells that help achieve the structural organization of the tissue. This review provides an examination of literature which has studied variations in cellular phenotype between cartilage zones. By doing so, we have identified critical differences between cell populations and highlighted areas of research which show potential in the field. Current research has made the morphological and metabolic variations between these cell populations clear, but an ideal way of maintaining these differences in vitro culture is yet to be established. Combinations of delivered growth factors, mechanical loading, and layered three-dimensional culture systems all show potential for achieving this goal. Furthermore, differentiation of progenitor cell populations into chondrocyte subpopulations may also hold promise for achieving large numbers of zonal chondrocytes. Success of the field lies in establishing methods of retaining phenotypically stable cell populations for in vitro culture.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center