Send to

Choose Destination
J Immunol. 2010 Jul 15;185(2):1158-68. doi: 10.4049/jimmunol.0903874. Epub 2010 Jun 16.

The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein.

Author information

Beijing Institute of Biotechnology, China.


Previous studies have shown that both hepatitis A virus and hepatitis C virus inhibit innate immunity by cleaving the mitochondrial antiviral signaling (MAVS) protein, an essential component of the virus-activated signaling pathway that activates NF-kappaB and IFN regulatory factor-3 to induce the production of type I IFN. For human hepatitis B virus (HBV), hepatitis B s-Ag, hepatitis B e-Ag, or HBV virions have been shown to suppress TLR-induced antiviral activity with reduced IFN-beta production and subsequent induction of IFN-stimulated genes. However, HBV-mediated suppression of the RIG-I-MDA5 pathway is unknown. In this study, we found that HBV suppressed poly(deoxyadenylate-thymidylate)-activated IFN-beta production in hepatocytes. Specifically, hepatitis B virus X (HBX) interacted with MAVS and promoted the degradation of MAVS through Lys(136) ubiquitin in MAVS protein, thus preventing the induction of IFN-beta. Further analysis of clinical samples revealed that MAVS protein was downregulated in hepatocellular carcinomas of HBV origin, which correlated with increased sensitivities of primary murine hepatocytes isolated from HBX knock-in transgenic mice upon vesicular stomatitis virus infections. By establishing a link between MAVS and HBX, this study suggests that HBV can target the RIG-I signaling by HBX-mediated MAVS downregulation, thereby attenuating the antiviral response of the innate immune system.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center