Format

Send to

Choose Destination
See comment in PubMed Commons below
Hum Gene Ther. 2010 Nov;21(11):1591-601. doi: 10.1089/hum.2010.024.

Electrotransfer of the full-length dog dystrophin into mouse and dystrophic dog muscles.

Author information

1
Unité de Recherche en Génétique Humaine, Centre de Recherche du Centre Hospitalier de l'Université Laval, Centre Hospitalier Universitaire de Québec, and Faculté de Médecine, Université Laval, Sainte-Foy, Québec, Canada.

Abstract

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by the absence of dystrophin (427 kDa). An approach to eventually restore this protein in patients with DMD is to introduce into their muscles a plasmid encoding dystrophin cDNA. Because the phenotype of the dystrophic dog is closer to the human phenotype than is the mdx mouse phenotype, we have studied the electrotransfer of a plasmid carrying the full-length dog dystrophin (FLDYS(dog)) in dystrophic dog muscle. To achieve this nonviral delivery, the FLDYS(dog) cDNA was cloned in two plasmids containing either a cytomegalovirus or a muscle creatine kinase promoter. In both cases, our results showed that the electrotransfer of these large plasmids (∼17 kb) into mouse muscle allowed FLDYS(dog) expression in the treated muscle. The electrotransfer of pCMV.FLDYS(dog) in a dystrophic dog muscle also led to the expression of dystrophin. In conclusion, introduction of the full-length dog dystrophin cDNA by electrotransfer into dystrophic dog muscle is a potential approach to restore dystrophin in patients with DMD. However, the electrotransfer procedure should be improved before applying it to humans.

PMID:
20553115
DOI:
10.1089/hum.2010.024
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Support Center