Send to

Choose Destination
BMC Microbiol. 2010 Jun 15;10:173. doi: 10.1186/1471-2180-10-173.

Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions.

Author information

Department of Cellular and Molecular Medicine, St George's, University of London, Centre for Infection, Cranmer Terrace, London SW17 0RE, UK.



S. aureus is a coloniser and pathogen of humans and mammals. Whole genome sequences of 58 strains of S. aureus in the public domain and data from multi-strain microarrays were compared to assess variation in the sequence of proteins known or putatively interacting with host.


These included 24 surface proteins implicated in adhesion (ClfA, ClfB, Cna, Eap, Ebh, EbpS, FnBPA, FnBPB, IsaB, IsdA, IsdB, IsdH, SasB, SasC, SasD, SasF, SasG, SasH, SasK, SdrC, SdrD, SdrE, Spa and SraP) and 13 secreted proteins implicated in immune response evasion (Coa, Ecb, Efb, Emp, EsaC, EsxA, EssC, FLIPr, FLIPr like, Sbi, SCIN-B, SCIN-C, VWbp) located on the stable core genome. Many surface protein genes were missing or truncated, unlike immune evasion genes, and several distinct variants were identified. Domain variants were lineage specific. Unrelated lineages often possess the same sequence variant domains proving that horizontal transfer and recombination has contributed to their evolution. Surprisingly, sequenced strains from four animal S. aureus strains had surface and immune evasion proteins remarkably similar to those found in human strains, yet putative targets of these proteins vary substantially between different hosts. This suggests these proteins are not essential for virulence. However, the most variant protein domains were the putative functional regions and there is biological evidence that variants can be functional, arguing they do play a role.


Surface and immune evasion genes are candidates for S. aureus vaccines, and their distribution and functionality is key. Vaccines should contain cocktails of antigens representing all variants or they will not protect against naturally occurring S. aureus populations.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center