Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 2010 Aug;104(2):665-74. doi: 10.1152/jn.00328.2010. Epub 2010 Jun 10.

Adrenergic receptor-mediated disinhibition of mitral cells triggers long-term enhancement of synchronized oscillations in the olfactory bulb.

Author information

Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, USA.


Norepinephrine (NE) is widely implicated in various forms of associative olfactory learning in rodents, including early learning preference in neonates. Here we used patch-clamp recordings in rat olfactory bulb slices to assess cellular actions of NE, examining both acute, short-term effects of NE as well as the relationship between these acute effects and long-term cellular changes that could underlie learning. Our focus for long-term effects was on synchronized gamma frequency (30-70 Hz) oscillations, shown in prior studies to be enhanced for up to an hour after brief exposure of a bulb slice to NE and neuronal stimulation. In terms of acute effects, we found that a dominant action of NE was to reduce inhibitory GABAergic transmission from granule cells (GCs) to output mitral cells (MCs). This disinhibition was also induced by clonidine, an agonist specific for alpha(2) adrenergic receptors (ARs). Acute NE-induced disinhibition of MCs appeared to be linked to long-term enhancement of gamma oscillations, based, first, on the fact that clonidine, but not agonists specific for other AR subtypes, mimicked NE's long-term actions. In addition, the alpha(2) AR-specific antagonist yohimbine blocked the long-term enhancement of the oscillations due to NE. Last, brief exposure of the slice to the GABA(A) receptor antagonist gabazine, to block inhibitory synapses directly, also induced the long-term changes. Acute disinhibition is a plausible permissive effect of NE leading to olfactory learning, because, when combined with exposure to a specific odor, it should lead to neuron-specific increases in intracellular calcium of the type generally associated with long-term synaptic modifications.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center