Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2010 Oct 15;53(1):239-46. doi: 10.1016/j.neuroimage.2010.06.002. Epub 2010 Jun 9.

Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: an inter-subject analysis.

Author information

Division of Academic Radiology, School of Clinical Sciences, University of Nottingham, Nottingham, UK.


The last two decades have witnessed great progress in mapping neural networks associated with task-induced brain activation. More recently, identification of resting state networks (RSN) paved the way to investigate spontaneous task-unrelated brain activity. The cardinal features characterising RSN are low-frequency fluctuations of blood oxygenation level dependent (BOLD) signals synchronised between spatially distinct, but functionally connected brain areas. Simultaneous EEG/fMRI has been previously deployed to study the neurophysiological signature of RSN by comparing EEG power with BOLD amplitudes. We hypothesised that band-limited EEG power may be directly related to network-specific functional connectivity (FC) of BOLD signal time courses. Hence, we studied the association between individual EEG signature and FC in a core RSN, the so-called default mode network (DMN). Combined EEG/fMRI data of 20 healthy volunteers collected during a 15-minute rest period were analysed. Using an inter-subject analysis design, we demonstrated a network and frequency specific relation between RSN FC and EEG. In a multiple regression model, EEG band-powers explained 70% of DMN FC variance, with significant partial correlations of DMN FC to delta (r=-0.73) and beta (r=0.53) power. The identified EEG pattern has been previously associated with increased alertness. Conversely, an established EEG-derived sedation index (spectral edge frequency SEF95) closely correlated with DMN FC. The study presents an approach that opens a new perspective to EEG/fMRI correlation. Direct evidence was provided for a distinct neurophysiological correlate of DMN FC. This finding further validates the biological relevance of network-specific intrinsic FC and provides an initial neurophysiological basis for interpreting studies of DMN FC alterations.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center