Send to

Choose Destination
J Integr Plant Biol. 2010 May;52(5):453-67. doi: 10.1111/j.1744-7909.2010.00943.x.

Identification and cloning of differentially expressed genes involved in the interaction between potato and Phytophthora infestans using a subtractive hybridization and cDNA-AFLP combinational approach.

Author information

Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg R3T2N2, Canada.


Using a subtractive hybridization (SH)/cDNA-AFLP combinational approach, differentially expressed genes involved in the potato-Phytophthora infestans interaction were identified. These included genes potentially controlling pathogenesis or avr genes in P. infestans as well as those potentially involved in potato resistance or susceptibility to this pathogen. Forty-one differentially expressed transcript-derived fragments (TDFs), resulting from the interaction, were cloned and sequenced. Two TDFs, suggested as potential pathogenicity factors, have sequence similarity to N-succinyl diaminopimelate aminotransferase and a transcriptional regulator, TetR family gene, respectively. Two other TDFs, suggested as potential avr genes, have sequence similarity to an EST sequence from Avr4/Cf-4/Avr9/Cf-9 and a P. infestans avirulence-associated gene, respectively. Genes' expression and origin were confirmed using Southern blots, Northern blots and qRT-PCR. I.e., potential resistance gene DL81 was induced at 12 hpi in the moderately resistant cultivar, whereas it was down-regulated as early as 6 hpi in the susceptible cultivar. On the other hand, DL21 was induced at 6 hpi (3.38-fold) in response to the highly aggressive isolate (US8) and strongly up-regulated thereafter (25.13-fold at 120 hpi.), whereas it was only slightly up-regulated in response to the weakly aggressive isolate US11 (3.82-fold at 96 hpi), suggesting its potential involvement as a susceptibility gene.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center