Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11265-70. doi: 10.1073/pnas.1000532107. Epub 2010 Jun 7.

Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway.

Author information

  • 1Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.


Acetoacetyl-CoA is the precursor of 3-hydroxy-3-methylglutaryl (HMG)-CoA in the mevalonate pathway, which is essential for terpenoid backbone biosynthesis. Acetoacetyl-CoA is also the precursor of poly-beta-hydroxybutyrate, a polymer belonging to the polyester class produced by microorganisms. The de novo synthesis of acetoacetyl-CoA is usually catalyzed by acetoacetyl-CoA thiolase via a thioester-dependent Claisen condensation reaction between two molecules of acetyl-CoA. Here, we report that nphT7, found in the mevalonate pathway gene cluster from a soil-isolated Streptomyces sp. strain, encodes an unusual acetoacetyl-CoA synthesizing enzyme. The recombinant enzyme overexpressed in Escherichia coli catalyzes a single condensation of acetyl-CoA and malonyl-CoA to give acetoacetyl-CoA and CoA. Replacement of malonyl-CoA with malonyl-(acyl carrier protein) resulted in loss of the condensation activity. No acetoacetyl-CoA synthesizing activity was detected through the condensation of two molecules of acetyl-CoA. Based on these properties of NphT7, we propose to name this unusual enzyme of the thiolase superfamily acetoacetyl-CoA synthase. Coexpression of nphT7 with the HMG-CoA synthase gene and the HMG-CoA reductase gene in a heterologous host allowed 3.5-fold higher production of mevalonate than when only the HMG-CoA synthase and HMG-CoA reductase genes were expressed. This result suggests that nphT7 can be used to significantly increase the concentration of acetoacetyl-CoA in cells, eventually leading to the production of useful terpenoids and poly-beta-hydroxybutyrate.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center