Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11313-8. doi: 10.1073/pnas.1002716107. Epub 2010 Jun 8.

Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast.

Author information

1
Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA.

Abstract

AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

PMID:
20534506
PMCID:
PMC2895110
DOI:
10.1073/pnas.1002716107
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center