Format

Send to

Choose Destination
FEMS Microbiol Lett. 2010 Aug 1;309(1):16-24. doi: 10.1111/j.1574-6968.2010.02009.x. Epub 2010 May 6.

Effect of the hfq gene on 2,4-diacetylphloroglucinol production and the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24.

Author information

1
Department of Plant Pathology, China Agricultural University, Beijing, China.

Abstract

Pseudomonas fluorescens 2P24 is an effective biological control agent of a number of soilborne plant diseases caused by pathogenic microorganisms. Among a range of secondary metabolites produced by strain 2P24, the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) is the major determinant of its disease-suppressive capacity. In this study, we performed random mutagenesis using mini-Tn5 in order to screen for the transcriptional regulators of the phlA gene, a biosynthase gene responsible for 2,4-DAPG production. The mutant PMphlA23 with significantly decreased phlA gene expression was identified from approximately 10,000 insertion colonies. The protein sequence of the interrupted gene has 84% identity to Hfq, a key regulator important for stress resistance and virulence in Pseudomonas aeruginosa. Genetic inactivation of hfq resulted in decreased expression of phlA and reduced production of 2,4-DAPG. Furthermore, the hfq gene was also required for the expression of pcoI, a synthase gene for the LuxI-type quorum-sensing signaling molecule N-acyl-homoserine lactone. Additionally, the hfq mutation drastically reduced biofilm formation and impaired the colonization ability of strain 2P24 on wheat rhizospheres. Based on these results, we propose that Hfq functions as an important regulatory element in the complex network controlling environmental adaption in P. fluorescens 2P24.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for Wiley
Loading ...
Support Center