Send to

Choose Destination
J Neurochem. 2010 Aug;114(4):1107-18. doi: 10.1111/j.1471-4159.2010.06835.x. Epub 2010 May 28.

NR2B-NMDA receptor-mediated increases in intracellular Ca2+ concentration regulate the tyrosine phosphatase, STEP, and ERK MAP kinase signaling.

Author information

Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, USA.


NMDA receptors regulate both the activation and inactivation of the extracellular signal-regulated kinase (ERK) signaling cascade, a key pathway involved in neuronal plasticity and survival. This bi-directional regulation of ERK activity by NMDA receptors has been attributed to opposing actions of NR2A- versus NR2B-containing NMDA receptors, but how this is implemented is not understood. Here, we show that glutamate-mediated intracellular Ca(2+) increases occur in two phases, a rapid initial increase followed by a delayed larger increase. Both phases of the Ca(2+) increase were blocked by MK-801, a non-selective NMDA receptor inhibitor. On the other hand, selective inhibition of NR2B-NMDA receptors by Ifenprodil or Ro 25-6981 blocked the delayed larger phase but had only a small effect on the rapid initial increase. The rapid initial increase in Ca(2+), presumably because of NR2A-NMDAR activation, was sufficient to activate ERK, whereas the large delayed increases in Ca(2+) mediated by NR2B-NMDARs were necessary for dephosphorylation and subsequent activation of striatal-enriched phosphatase, a neuron-specific tyrosine phosphatase that in turn mediates the dephosphorylation and inactivation of ERK. We conclude that the magnitude of Ca(2+) increases mediated through NR2B-NMDA receptors plays a critical role in the regulation of the serine/threonine and tyrosine kinases and phosphatases that are involved in the regulation of ERK activity.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center