Format

Send to

Choose Destination
See comment in PubMed Commons below
Opt Lett. 2010 Jun 1;35(11):1752-4. doi: 10.1364/OL.35.001752.

High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier.

Author information

1
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics,Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. kyunghan@mit.edu

Abstract

We demonstrate amplification of picosecond laser pulses to 40?mJ at a 2?kHz pulse repetition frequency (PRF) from a two-stage cryogenic chirped-pulse Yb:YAG amplifier, composed of a regenerative amplifier (RGA) and a two-pass booster amplifier. The RGA produces 8.2mJ of energy at 2kHz PRF and 13.2mJ at 1kHz PRF with excellent energy stability (approximately 0.3% rms) and beam quality (M(2)<1.1). Pulse stretching and compression are achieved by using a chirped fiber Bragg grating and a multilayer dielectric grating pair, respectively. Compressed 15?ps pulses from the RGA are obtained with a throughput efficiency of approximately 80% (approximately 6.5 mJ for 2kHz). The booster amplifier further amplifies the pulses to 40mJ at 2kHz PRF, and approximately 32 mJ, approximately 15 ps pulses are expected after compression. The amplifier chain seeded from a femtosecond Yb-fiber laser enables the optical self-synchronization between signal and pump in optical parametric chirped-pulse amplifier applications.

PMID:
20517404
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center