Format

Send to

Choose Destination
See comment in PubMed Commons below
Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a002527. doi: 10.1101/cshperspect.a002527. Epub 2010 May 5.

The Hadean-Archaean environment.

Author information

1
Department of Geophysics, Stanford University, Stanford, CA 94305, USA. norm@stanford.edu

Abstract

A sparse geological record combined with physics and molecular phylogeny constrains the environmental conditions on the early Earth. The Earth began hot after the moon-forming impact and cooled to the point where liquid water was present in approximately 10 million years. Subsequently, a few asteroid impacts may have briefly heated surface environments, leaving only thermophile survivors in kilometer-deep rocks. A warm 500 K, 100 bar CO(2) greenhouse persisted until subducted oceanic crust sequestered CO(2) into the mantle. It is not known whether the Earth's surface lingered in a approximately 70 degrees C thermophile environment well into the Archaean or cooled to clement or freezing conditions in the Hadean. Recently discovered approximately 4.3 Ga rocks near Hudson Bay may have formed during the warm greenhouse. Alkalic rocks in India indicate carbonate subduction by 4.26 Ga. The presence of 3.8 Ga black shales in Greenland indicates that S-based photosynthesis had evolved in the oceans and likely Fe-based photosynthesis and efficient chemical weathering on land. Overall, mantle derived rocks, especially kimberlites and similar CO(2)-rich magmas, preserve evidence of subducted upper oceanic crust, ancient surface environments, and biosignatures of photosynthesis.

PMID:
20516134
PMCID:
PMC2869525
DOI:
10.1101/cshperspect.a002527
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center