Format

Send to

Choose Destination
See comment in PubMed Commons below
Front Biosci (Landmark Ed). 2010 Jun 1;15:1191-1204.

Splicing of the Survival Motor Neuron genes and implications for treatment of SMA

Author information

1
The Molecular, Cellular, and Developmental Biology (MCDB) Graduate Program, The Ohio State University, Columbus, Ohio, USA.

Abstract

Proximal spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of the survival motor neuron (SMN) protein. The reduced SMN levels are due to loss of the survival motor neuron-1 (SMN1) gene. Humans carry a nearly identical SMN2 gene that generates a truncated protein, due to a C to T nucleotide alteration in exon 7 that leads to inefficient RNA splicing of exon 7. This exclusion of SMN exon 7 is central to the onset of the SMA disease, however, this offers a unique therapeutic intervention in which corrective splicing of the SMN2 gene would restore SMN function. Exon 7 splicing is regulated by a number of exonic and intronic splicing regulatory sequences and trans-factors that bind them. A better understanding of the way SMN pre-mRNA is spliced has lead to the development of targeted therapies aimed at correcting SMN2 splicing. As therapeutics targeted toward correction of SMN2 splicing continue to be developed available SMA mouse models can be utilized in validating their potential in disease treatment.

PMID:
20515750
PMCID:
PMC2921696
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers in Bioscience Icon for PubMed Central
    Loading ...
    Support Center