Send to

Choose Destination
See comment in PubMed Commons below
Arch Histol Cytol. 2009;72(3):139-49.

Morphological varieties of the Purkinje fiber network in mammalian hearts, as revealed by light and electron microscopy.

Author information

Department of Cardiovascular Science, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita-ken, Japan.


Purkinje fibers in mammalian hearts are known to comprise the following three groups depending on their structure: group I found commonly in ungulates, group II in humans, monkeys and dogs, and group III in rodents. The aim of the present study was to document precisely the cytoarchitecture of a network of Purkinje fibers in different species by light and electron microscopy. Light microscopy of silver impregnated tissues revealed the reticular fibers ensheathing individual Purkinje strands consisting of 2-8 cells in both the ungulates (i.e., sheep and goats) and cetaceans (whales and dolphins) while they encircled each Purkinje cell in the primates (humans and monkeys), carnivores (dogs and seals), and rodents (rats). Scanning electron microscopy of NaOH digested tissues showed the ungrates (group I) to have a Purkinje fiber network composed of Purkinje strands; the cells in the strands were oval and made side-to-side and/or end-to-end connections. The Purkinje fiber network in the primates and carnivores (group II) was delicate and complicated; the Purkinje cells were usually cylindrical and connected end-to-end, the exception being their polygonal or stellate shapes at the bifurcations. Purkinje cells in the rodents (group III) resembled ventricular cardiac myocytes in cytoarchitecture. Morphologically, whales and seals respectively belonged to Purkinje cells of group I and group II. These findings indicate that the structural variety of the Purkinje fiber network may reflect the conducting function and be related to the phylogeny of the mammalian species.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center