Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2010 Jul 1;185(1):569-77. doi: 10.4049/jimmunol.0902315. Epub 2010 May 28.

NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice.

Author information

1
Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, USA.

Abstract

Sepsis syndrome is characterized by a dysregulated inflammatory response to infection. NADPH oxidase-dependent reactive oxygen species (ROS) play significant roles in the pathophysiology of sepsis. We previously showed that disruption of Nrf2, a master regulator of antioxidant defenses, caused a dysregulation of innate immune response that resulted in greater mortality in a polymicrobial sepsis and LPS shock model; however, the underlying mechanisms are unclear. In the current study, compared with wild-type (Nrf2(+/+)) macrophages, we observed greater protein kinase C-induced NADPH oxidase-dependent ROS generation in Nrf2-disrupted (Nrf2(-/-)) macrophages that was modulated by glutathione levels. To address the NADPH oxidase-mediated hyperinflammatory response and sepsis-induced lung injury and mortality in Nrf2(-/-) mice, we used double knockout mice lacking Nrf2 and NADPH oxidase subunit, gp91(phox) (Nrf2(-/-)//gp91(phox-/-)). Compared with Nrf2(+/+) macrophages, LPS induced greater activation of TLR4 as evident by TLR4 surface trafficking and downstream recruitment of MyD88 and Toll/IL-1R domain-containing adaptor in Nrf2(-/-) macrophages that was diminished by ablation of gp91(phox). Similarly, phosphorylation of IkappaB and IFN regulatory factor 3 as well as cytokine expression was markedly higher in Nrf2(-/-) macrophages; whereas, it was similar in Nrf2(+/+) and Nrf2(-/-)//gp91(phox-/-). In vivo studies showed greater LPS-induced pulmonary inflammation in Nrf2(-/-) mice that was significantly reduced by ablation of gp91(phox). Furthermore, LPS shock and polymicrobial sepsis induced early and greater mortality in Nrf2(-/-) mice; whereas, Nrf2(-/-)//gp91(phox-/-) showed prolonged survival. Together, these results demonstrate that Nrf2 is essential for the regulation of NADPH oxidase-dependent ROS-mediated TLR4 activation and lethal innate immune response in sepsis.

PMID:
20511556
PMCID:
PMC2913313
DOI:
10.4049/jimmunol.0902315
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center