Format

Send to

Choose Destination
See comment in PubMed Commons below
IEEE Trans Biomed Eng. 2010 Aug;57(8):2001-10. doi: 10.1109/TBME.2010.2048752. Epub 2010 May 24.

Tracking endocardial motion via multiple model filtering.

Author information

1
GE Healthcare, London, ON N6A 4V2, Canada. kumaradevan.punithakumar@ge.com

Abstract

Tracking heart motion plays an essential role in the diagnosis of cardiovascular diseases. As such, accurate characterization of dynamic behavior of the left ventricle (LV) is essential in order to enhance the performance of motion estimation. However, a single Markovian model is not sufficient due to the substantial variability in typical heart motion. Moreover, dynamics of an abnormal heart could be very different from that of a normal heart. This study introduces a tracking approach based on multiple models, each matched to a different phase of the LV motion. First, the algorithm adopts a graph cut distribution matching method to tackle the problem of segmenting LV cavity from cardiac MR images, which is acknowledged as a difficult problem because of low contrast and photometric similarities between the heart wall and papillary muscles within the LV cavity. Second, interacting multiple model (IMM), an effective estimation algorithm for Markovian switching system, is devised subsequent to the segmentations to yield state estimates of the endocardial boundary points. The IMM also yields the model probability indicating the model that most closely matches the LV motion. The proposed method is evaluated quantitatively by comparison with independent manual segmentations over 2280 images acquired from 20 subjects, which demonstrated competitive results in comparisons with related recent methods.

PMID:
20501346
DOI:
10.1109/TBME.2010.2048752
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Support Center