Format

Send to

Choose Destination
Neuroscience. 2010 Sep 1;169(3):1347-63. doi: 10.1016/j.neuroscience.2010.05.022. Epub 2010 May 16.

Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer's disease.

Author information

1
Department of Molecular and Cellular Mechanisms of Neurodegeneration, Medical Faculty, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany. morm@medizin.uni-leipzig.de

Abstract

The biological basis for the selective vulnerability of neurons in Alzheimer's disease (AD) is elusive. Aggrecan-based perineuronal nets (PNs) of the extracellular matrix have been considered to contribute to neuroprotection in the cerebral cortex. In the present study, we investigated the organization of the aggrecan-based extracellular matrix in subcortical regions known to be preferentially affected by tau pathology in AD. Immunocytochemistry of aggrecan core protein was combined with detection of neurofibrillary degeneration. The results show that many regions affected by tau pathology in AD, such as the basal nucleus of Meynert, the dorsal thalamus, hypothalamic nuclei, raphe nuclei, and the locus coeruleus were devoid of a characteristic aggrecan-based extracellular matrix. Regions composed of nuclei with clearly different intensity of tau pathology, such as the amygdala, the thalamus and the oculomotor complex, showed largely complementary distribution patterns of neurofibrillary tangles and PNs. Quantification in the rostral interstitial nucleus of the longitudinal fascicle potentially affected by tau pathology in AD revealed that tau pathology was not accompanied by loss of aggrecan-based PNs. Neuro-fibrillary tangles in net-associated neurons extremely rarely occurred in the pontine reticular formation. We conclude that the low vulnerability of neurons ensheathed by PNs previously described for cortical areas in AD represents a more general phenomenon that also applies to subcortical regions. The aggrecan-based extracellular matrix of PNs may thus, be involved in neuroprotection.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center