Format

Send to

Choose Destination
Connect Tissue Res. 2010 Dec;51(6):497-509. doi: 10.3109/03008201003746679. Epub 2010 May 24.

Hyperbaric oxygen-stimulated proliferation and growth of osteoblasts may be mediated through the FGF-2/MEK/ERK 1/2/NF-κB and PKC/JNK pathways.

Author information

1
Orthopaedic Surgery Department and Hyperbaric Center, Changhua Christian Hospital, Changhua, Taiwan, ROC.

Abstract

We investigated whether the hyperbaric oxygen (O₂) could promote the proliferation of growth-arrested osteoblasts in vitro and the mechanisms involved in this process. Osteoblasts were exposed to different combinations of saturation and pressure of O₂ and evaluated at 3 and 7 days. Control cells were cultured under ambient O₂ and normal pressure [1 atmosphere (ATA)]; high-pressure group cells were treated with high pressure (2.5 ATA) twice daily; high-O₂ group cells were treated with a high concentration O₂ (50% O₂) twice daily; and high pressure plus high-O₂ group cells were treated with high pressure (2.5 ATA) and a high concentration O₂ (50% O₂) twice daily. Hyperbaric O₂ significantly promoted osteoblast proliferation and cell cycle progression after 3 days of treatment. Hyperbaric O₂ treatment stimulated significantly increased mRNA expression of fibroblast growth factor (FGF)-2 as well as protein expression levels of Akt, p70(S6K), phosphorylated ERK, nuclear factor (NF)-κB, protein kinase C (PKC)α, and phosphorylated c-Jun N-terminal kinase (JNK). Our findings indicate that high pressure and high O₂ saturation stimulates growth-arrested osteoblasts to proliferate. These findings suggest that the proliferative effects of hyperbaric O₂ on osteoblasts may contribute to the recruitment of osteoblasts at the fracture site. The FGF-2/MEK/ERK 1/2/Akt/p70(S6K)/NF-κB and PKC/JNK pathways may be involved in mediating this process.

PMID:
20497028
DOI:
10.3109/03008201003746679
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center