Send to

Choose Destination
Steroids. 2010 Dec;75(12):870-8. doi: 10.1016/j.steroids.2010.05.007. Epub 2010 May 21.

Glyceollin I enantiomers distinctly regulate ER-mediated gene expression.

Author information

Tulane Department of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, LA 70112, USA.


Glyceollins are pterocarpan phytoalexins elicited in high concentrations when soybeans are stressed. We have previously reported that the three glyceollin isomers (GLY I-III) exhibit antiestrogenic properties, which may have significant biological effects upon human exposure. Of the three isomers, we have recently shown that glyceollin I is the most potent antiestrogen. Natural (-)-glyceollin I recently was synthesized along with its racemate and unnatural (+) enantiomer. In this study, we compared the glyceollin I enantiomers' ER binding affinity, ability to inhibit estrogen responsive element transcriptional (ERE) activity and endogenous gene expression in MCF-7 cells. The results demonstrated similar binding affinities for both ERalpha and ERbeta. Reporter gene assays in MCF-7 cells revealed that while (+)-glyceollin I slightly stimulated ERE transcriptional activity, (-)-glyceollin I decreased activity induced by estrogen. Co-transfection reporter assays performed in HEK 293 cells demonstrated that (+)-glyceollin I increased ERE transcriptional activity of ERalpha and ERbeta with and without estrogen with no antiestrogenic activity observed. Conversely, (-)-glyceollin I decreased the activity of both ER subtypes stimulated by estradiol demonstrating potent antiestrogenic properties. Additionally, each Gly I enantiomer induced unique gene expression profiles in a PCR array panel of genes commonly altered in breast cancer.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center