Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2010 Aug;31(24):6279-308. doi: 10.1016/j.biomaterials.2010.04.053. Epub 2010 May 21.

Toward delivery of multiple growth factors in tissue engineering.

Author information

Department of Periodontology & Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, People's Republic of China.


Inspired by physiological events that accompany the "wound healing cascade", the concept of developing a tissue either in vitro or in vivo has led to the integration of a wide variety of growth factors (GFs) in tissue engineering strategies in an effort to mimic the natural microenvironments of tissue formation and repair. Localised delivery of exogenous GFs is believed to be therapeutically effective for replication of cellular components involved in tissue development and the healing process, thus making them important factors for tissue regeneration. However, any treatment aiming to mimic the critical aspects of the natural biological process should not be limited to the provision of a single GF, but rather should release multiple therapeutic agents at an optimised ratio, each at a physiological dose, in a specific spatiotemporal pattern. Despite several obstacles, delivery of more than one GF at rates mimicking an in vivo situation has promising potential for the clinical management of severely diseased tissues. This article summarises the concept of and early approaches toward the delivery of dual or multiple GFs, as well as current efforts to develop sophisticated delivery platforms for this ambitious purpose, with an emphasis on the application of biomaterials-based deployment technologies that allow for controlled spatial presentation and release kinetics of key biological cues. Additionally, the use of platelet-rich plasma or gene therapy is addressed as alternative, easy, cost-effective and controllable strategies for the release of high concentrations of multiple endogenous GFs, followed by an update of the current progress and future directions of research utilising release technologies in tissue engineering and regenerative medicine.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center