Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2010 Jun 15;44(12):4789-95. doi: 10.1021/es1004158.

Partitioning of persistent organic pollutants between blubber and blood of wild bottlenose dolphins: implications for biomonitoring and health.

Author information

1
Hollings Marine Laboratory, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina 29412, USA. jennifer.yordy@noaa.gov

Abstract

Biomonitoring surveys of wild cetaceans commonly utilize blubber as a means to assess exposure to persistent organic pollutants (POPs), but the relationship between concentrations in blubber and those in blood, a better indicator of target organ exposure, is poorly understood. To define this relationship, matched blubber and plasma samples (n = 56) were collected from free-ranging bottlenose dolphins (Tursiops truncatus) and analyzed for 61 polychlorinated biphenyl (PCB) congeners, 5 polybrominated diphenyl ether (PBDE) congeners, and 13 organochlorine pesticides (OCPs). With the exception of PCB 209, lipid-normalized concentrations of the major POPs in blubber and plasma were positively and significantly correlated (R(2) = 0.828 to 0.976). Plasma concentrations, however, significantly increased with declining blubber lipid content, suggesting that as lipid is utilized, POPs are mobilized into blood. Compound- and homologue- specific blubber/blood partition coefficients also differed according to lipid content, suggesting POPs are selectively mobilized from blubber. Overall, these results suggest that with the regression parameters derived here, blubber may be used to estimate blood concentrations and vice versa. Additionally, the mobilization of lipid from blubber and concomitant increase in contaminants in blood suggests cetaceans with reduced blubber lipid may be at greater risk for contaminant-associated health effects.

PMID:
20491435
DOI:
10.1021/es1004158
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center