Format

Send to

Choose Destination
New Phytol. 2010 Jul;187(2):355-67. doi: 10.1111/j.1469-8137.2010.03295.x. Epub 2010 May 12.

Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL x environment interactions.

Author information

1
Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille - Lille1, F-59655 Villeneuve d'Ascq Cedex, France. helene.frerot@univ-lille1.fr

Abstract

This study sought to determine the main genomic regions that control zinc (Zn) hyperaccumulation in Arabidopsis halleri and to examine genotype x environment effects on phenotypic variance. To do so, quantitative trait loci (QTLs) were mapped using an interspecific A. halleri x Arabidopsis lyrata petraea F(2) population. *The F(2) progeny as well as representatives of the parental populations were cultivated on soils at two different Zn concentrations. A linkage map was constructed using 70 markers. *In both low and high pollution treatments, zinc hyperaccumulation showed high broad-sense heritability (81.9 and 74.7%, respectively). Five significant QTLs were detected: two QTLs specific to the low pollution treatment (chromosomes 1 and 4), and three QTLs identified at both treatments (chromosomes 3, 6 and 7). These QTLs explained 50.1 and 36.5% of the phenotypic variance in low and high pollution treatments, respectively. Two QTLs identified at both treatments (chromosomes 3 and 6) showed significant QTL x environment interactions. *The QTL on chromosome 3 largely colocalized with a major QTL previously identified for Zn and cadmium (Cd) tolerance. This suggests that Zn tolerance and hyperaccumulation share, at least partially, a common genetic basis and may have simultaneously evolved on heavy metal-contaminated soils.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center