Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2010 May 19;98(10):2246-53. doi: 10.1016/j.bpj.2010.01.055.

Force generation of curved actin gels characterized by combined AFM-epifluorescence measurements.

Author information

Physikalische Chemie II, Universität Bayreuth, Bayreuth, Germany.


Polymerization of actin into branched filaments is the driving force behind active migration of eukaryotic cells and motility of intracellular organelles. The site-directed assembly of a polarized branched array forms an expanding gel that generates the force that pushes the membrane. Here, we use atomic force microscopy to understand the relation between actin polymerization and the produced force. Functionalized spherical colloidal probes of varying size and curvature are attached to the atomic force microscopy cantilever and initiate the formation of a polarized actin gel in a solution mimicking the in vivo context. The gel growth is recorded by epifluorescence microscopy both against the cantilever and in the perpendicular (lateral) nonconstrained direction. In this configuration, the gel growth stops simultaneously in both directions at the stall force, which corresponds to a pressure of 0.15 nN/microm(2). The results show that the growth of the gel is limited laterally, in the absence of external force, by internal mechanical stresses resulting from a combination of the curved geometry and the molecular mechanism of site-directed assembly of a cohesive branched filament array.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center