Format

Send to

Choose Destination
Appl Spectrosc. 2010 May;64(5):135A-152A.

Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Plenary Lecture at the 5th International Conference on Advanced Vibrational Spectroscopy, 2009, Melbourne, Australia.

Author information

1
Department of Chemical Engineering, Imperial College London, SW7 2AZ, London, England.

Erratum in

  • Appl Spectrosc. 2010 Jul;64(7):846.

Abstract

Fourier transform infrared (FT-IR) spectroscopic imaging has become a very powerful method in chemical analysis. In this review paper we describe a variety of opportunities for obtaining FT-IR images using the attenuated total reflection (ATR) approach and provide an overview of fundamental aspects, accessories, and applications in both micro- and macro-ATR imaging modes. The advantages and versatility of both ATR imaging modes are discussed and the spatial resolution of micro-ATR imaging is demonstrated. Micro-ATR imaging has opened up many new areas of study that were previously precluded by inadequate spatial resolution (polymer blends, pharmaceutical tablets, cross-sections of blood vessels or hair, surface of skin, single live cells, cancerous tissues). Recent applications of ATR imaging in polymer research, biomedical and forensic sciences, objects of cultural heritage, and other complex materials are outlined. The latest advances include obtaining spatially resolved chemical images from different depths within a sample, and surface-enhanced images for macro-ATR imaging have also been presented. Macro-ATR imaging is a valuable approach for high-throughput analysis of materials under controlled environments. Opportunities exist for chemical imaging of dynamic aqueous systems, such as dissolution, diffusion, microfluidics, or imaging of dynamic processes in live cells.

PMID:
20482963
DOI:
10.1366/000370210791211673

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center