Send to

Choose Destination
Evolution. 2010 Oct;64(10):2935-51. doi: 10.1111/j.1558-5646.2010.01030.x. Epub 2010 Aug 19.

Quantitative genetics of shape in cricket wings: developmental integration in a functional structure.

Author information

Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom.


The role of developmental and genetic integration for evolution is contentious. One hypothesis states that integration acts as a constraint on evolution, whereas an alternative is that developmental and genetic systems evolve to match the functional modularity of organisms. This study examined a morphological structure, the cricket wing, where developmental and functional modules are discordant, making it possible to distinguish the two alternatives. Wing shape was characterized with geometric morphometrics, quantitative genetic information was extracted using a full-sibling breeding design, and patterns of developmental integration were inferred from fluctuating asymmetry of wing shape. The patterns of genetic, phenotypic, and developmental integration were clearly similar, but not identical. Heritabilities for different shape variables varied widely, but no shape variables were devoid of genetic variation. Simulated selection for specific shape changes produced predicted responses with marked deflections due to the genetic covariance structure. Three hypotheses of modularity according to the wing structures involved in sound production were inconsistent with the genetic, phenotypic, or developmental covariance structure. Instead, there appears to be strong integration throughout the wing. The hypothesis that genetic and developmental integration evolve to match functional modularity can therefore be rejected for this example.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center