Format

Send to

Choose Destination
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046110. Epub 2010 Apr 20.

Statistical significance of communities in networks.

Author information

1
Complex Networks Lagrange Laboratory, Turin, Italy and Physics Department, Politecnico di Torino, ISI Foundation, Turin, Italy.

Abstract

Nodes in real-world networks are usually organized in local modules. These groups, called communities, are intuitively defined as subgraphs with a larger density of internal connections than of external links. In this work, we define a measure aimed at quantifying the statistical significance of single communities. Extreme and order statistics are used to predict the statistics associated with individual clusters in random graphs. These distributions allows us to define one community significance as the probability that a generic clustering algorithm finds such a group in a random graph. The method is successfully applied in the case of real-world networks for the evaluation of the significance of their communities.

PMID:
20481789
DOI:
10.1103/PhysRevE.81.046110
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center