Send to

Choose Destination
See comment in PubMed Commons below
Am Nat. 2010 Jul;176(1):26-39. doi: 10.1086/652992.

Natural and sexual selection giveth and taketh away reproductive barriers: models of population divergence in guppies.

Author information

INRA, Unité Mixte de Recherche 1224 Ecologie Comportementale et Biologie des Populations de Poissons, F-64310 Saint-Pée sur Nivelle, France.


The standard predictions of ecological speciation might be nuanced by the interaction between natural and sexual selection. We investigated this hypothesis with an individual-based model tailored to the biology of guppies (Poecilia reticulata). We specifically modeled the situation where a high-predation population below a waterfall colonizes a low-predation population above a waterfall. Focusing on the evolution of male color, we confirm that divergent selection causes the appreciable evolution of male color within 20 generations. The rate and magnitude of this divergence were reduced when dispersal rates were high and when female choice did not differ between environments. Adaptive divergence was always coupled to the evolution of two reproductive barriers: viability selection against immigrants and hybrids. Different types of sexual selection, however, led to contrasting results for another potential reproductive barrier: mating success of immigrants. In some cases, the effects of natural and sexual selection offset each other, leading to no overall reproductive isolation despite strong adaptive divergence. Sexual selection acting through female choice can thus strongly modify the effects of divergent natural selection and thereby alter the standard predictions of ecological speciation. We also found that under no circumstances did divergent selection cause appreciable divergence in neutral genetic markers.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for University of Chicago Press
    Loading ...
    Support Center