Format

Send to

Choose Destination
Nat Cell Biol. 2010 Jun;12(6):572-82. doi: 10.1038/ncb2059. Epub 2010 May 16.

Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death.

Author information

1
Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles (ULB), 808, route de Lennik, BatC, C6-130, 1070 Brussels, Belgium.

Abstract

Adult stem cells (SCs) are at high risk of accumulating deleterious mutations because they reside and self-renew in adult tissues for extended periods. Little is known about how adult SCs sense and respond to DNA damage within their natural niche. Here, using mouse epidermis as a model, we define the functional consequences and the molecular mechanisms by which adult SCs respond to DNA damage. We show that multipotent hair-follicle-bulge SCs have two important mechanisms for increasing their resistance to DNA-damage-induced cell death: higher expression of the anti-apoptotic gene Bcl-2 and transient stabilization of p53 after DNA damage in bulge SCs. The attenuated p53 activation is the consequence of a faster DNA repair activity, mediated by a higher non-homologous end joining (NHEJ) activity, induced by the key protein DNA-PK. Because NHEJ is an error-prone mechanism, this novel characteristic of adult SCs may have important implications in cancer development and ageing.

Comment in

PMID:
20473297
DOI:
10.1038/ncb2059
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center