Format

Send to

Choose Destination
See comment in PubMed Commons below
Med Care. 2010 Jun;48(6 Suppl):S137-44. doi: 10.1097/MLR.0b013e3181e24563.

Bayesian meta-analyses for comparative effectiveness and informing coverage decisions.

Author information

1
Berry Consultants, College Station, TX 77845, USA. scott@berryconsultants.com

Abstract

BACKGROUND:

Evidence-based medicine is increasingly expected in health care decision-making. The Centers for Medicare and Medicaid have initiated efforts to understand the applicability of Bayesian techniques for synthesizing evidence. As a case study, a Bayesian analysis of clinical trials of implantable cardioverter defibrillators was undertaken using patient-level data not typically available for analysis.

PURPOSE:

Conduct Bayesian meta-analyses of the defibrillator trials using published results to demonstrate a Bayesian approach useful to policy makers. DATA SOURCES, STUDY SELECTION, DATA EXTRACTION: We reconsidered trials in a 2007 systematic review by Ezekowitz et al (Ann Intern Med. 2007;147:251-262) and extracted information from the original published articles. Employing a Bayesian hierarchical approach, we developed a base model and 2 variants, and modeled hazard ratios separately within each year of follow-up. We considered sequential meta-analyses over time and found the predictive distribution of the results of the next trial, given its sample size.

DATA SYNTHESIS:

For the most robust of 3 models, the probability that the mean defibrillator effect (in the population of trials) is beneficial is greater than 0.999. In that model, about 5% of trials in the population of trials would have a detrimental effect. Despite the moderate amount of heterogeneity across the trials, there was stability of conclusions after the first 3 of the 12 total trials had been conducted. This stability enabled reasonable predictions for the results of future trials.

LIMITATIONS:

Inability to assess treatment effects within subsets of patients.

CONCLUSIONS:

Bayesian meta-analyses based on literature surveys can effectively inform coverage decisions. Bayesian modeling for endpoints such as mortality can elucidate treatment effects over time. The Bayesian approach used in a sequential manner over time can predict results and help assess the utility of future clinical trials.

PMID:
20473185
DOI:
10.1097/MLR.0b013e3181e24563
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Support Center