Format

Send to

Choose Destination
See comment in PubMed Commons below
ISME J. 2010 Oct;4(10):1252-64. doi: 10.1038/ismej.2010.60. Epub 2010 May 13.

Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans.

Author information

1
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Abstract

To better understand the temporal and spatial dynamics of Prochlorococcus populations, and how these populations co-vary with the physical environment, we followed monthly changes in the abundance of five ecotypes-two high-light adapted and three low-light adapted-over a 5-year period in coordination with the Bermuda Atlantic Time Series (BATS) and Hawaii Ocean Time-series (HOT) programs. Ecotype abundance displayed weak seasonal fluctuations at HOT and strong seasonal fluctuations at BATS. Furthermore, stable 'layered' depth distributions, where different Prochlorococcus ecotypes reached maximum abundance at different depths, were maintained consistently for 5 years at HOT. Layered distributions were also observed at BATS, although winter deep mixing events disrupted these patterns each year and produced large variations in ecotype abundance. Interestingly, the layered ecotype distributions were regularly reestablished each year after deep mixing subsided at BATS. In addition, Prochlorococcus ecotypes each responded differently to the strong seasonal changes in light, temperature and mixing at BATS, resulting in a reproducible annual succession of ecotype blooms. Patterns of ecotype abundance, in combination with physiological assays of cultured isolates, confirmed that the low-light adapted eNATL could be distinguished from other low-light adapted ecotypes based on its ability to withstand temporary exposure to high-intensity light, a characteristic stress of the surface mixed layer. Finally, total Prochlorococcus and Synechococcus dynamics were compared with similar time series data collected a decade earlier at each location. The two data sets were remarkably similar-testimony to the resilience of these complex dynamic systems on decadal time scales.

PMID:
20463762
DOI:
10.1038/ismej.2010.60
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center