Send to

Choose Destination
Kidney Int. 2010 Dec;78(11):1100-9. doi: 10.1038/ki.2010.139. Epub 2010 May 12.

CD4+CD25+ regulatory T cells attenuate cisplatin-induced nephrotoxicity in mice.

Author information

Department of Physiology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea.


Nephrotoxicity limits the use of cisplatin, a widely used chemotherapeutic agent for treatment of various malignancies. Overall, CD4+ T cells mediate cisplatin-induced renal injury; however, the CD4+CD25+ regulatory T-cell subset (CD4+CD25+ Treg) has broad suppressive effects on many different cell types. In this study, we determined whether CD4+CD25+ Treg cells had protective effects against cisplatin-induced acute renal injury in nu/nu mice that lack mature T cells. In these mice, there was marked attenuation of the decreased survival, renal dysfunction and tubular injury, renal tumor necrosis factor-α, and interleukin-1β cytokine levels. Furthermore, renal macrophage accumulation was reduced in CD4+CD25+ Treg cell-adoptive transferred nu/nu mice compared with control mice. Infusion of CD4+CD25+Treg cells into wild-type Balb/c mice reduced serum blood urea nitrogen and creatinine levels equivalent to those in nu/nu mice and extended their survival time after cisplatin injection. In contrast, depletion of CD4+CD25+ Treg cells in wild-type mice exacerbated kidney injury after cisplatin administration. Transcription factor Foxp3-positive cells (Treg cells) were detected in the kidneys of nu/nu mice after cisplatin injection. Our results suggest that CD4+CD25+ Treg cells directly affect cisplatin nephrotoxicity and their modulation represents an additional treatment strategy.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center