Format

Send to

Choose Destination
Nanotechnology. 2010 Jun 11;21(23):235102. doi: 10.1088/0957-4484/21/23/235102. Epub 2010 May 13.

Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue.

Author information

1
Department of Bio and Brain Engineering, KAIST, Daejeon, Korea.

Abstract

Researchers have made extensive efforts to mimic or reverse-engineer in vivo neural circuits using micropatterning technology. Various surface chemical cues or topographical structures have been proposed to design neuronal networks in vitro. In this paper, we propose a carbon nanotube (CNT)-based network engineering method which naturally mimics the structure of extracellular matrix (ECM). On CNT patterned substrates, poly-L-lysine (PLL) was coated, and E18 rat hippocampal neurons were cultured. In the early developmental stage, soma adhesion and neurite extension occurred in disregard of the surface CNT patterns. However, later the majority of neurites selectively grew along CNT patterns and extended further than other neurites that originally did not follow the patterns. Long-term cultured neuronal networks had a strong resemblance to the in vivo neural circuit structures. The selective guidance is possibly attributed to higher PLL adsorption on CNT patterns and the nanomesh structure of the CNT patterns. The results showed that CNT patterned substrates can be used as novel neuronal patterning substrates for in vitro neural engineering.

PMID:
20463384
DOI:
10.1088/0957-4484/21/23/235102
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IOP Publishing Ltd.
Loading ...
Support Center