Format

Send to

Choose Destination
Cold Spring Harb Perspect Biol. 2010 May;2(5):a002162. doi: 10.1101/cshperspect.a002162. Epub 2010 Apr 14.

Mineral surfaces, geochemical complexities, and the origins of life.

Author information

1
Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA. rhazen@ciw.edu

Abstract

Crystalline surfaces of common rock-forming minerals are likely to have played several important roles in life's geochemical origins. Transition metal sulfides and oxides promote a variety of organic reactions, including nitrogen reduction, hydroformylation, amination, and Fischer-Tropsch-type synthesis. Fine-grained clay minerals and hydroxides facilitate lipid self-organization and condensation polymerization reactions, notably of RNA monomers. Surfaces of common rock-forming oxides, silicates, and carbonates select and concentrate specific amino acids, sugars, and other molecular species, while potentially enhancing their thermal stabilities. Chiral surfaces of these minerals also have been shown to separate left- and right-handed molecules. Thus, mineral surfaces may have contributed centrally to the linked prebiotic problems of containment and organization by promoting the transition from a dilute prebiotic "soup" to highly ordered local domains of key biomolecules.

PMID:
20452963
PMCID:
PMC2857174
DOI:
10.1101/cshperspect.a002162
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center