Format

Send to

Choose Destination
Phys Chem Chem Phys. 2010 Jun 7;12(21):5503-13. doi: 10.1039/b926434e. Epub 2010 May 6.

Parameter-free calculations of X-ray spectra with FEFF9.

Author information

1
Department of Physics, University of Washington, Seattle, WA 98195, USA.

Abstract

We briefly review our implementation of the real-space Green's function (RSGF) approach for calculations of X-ray spectra, focusing on recently developed parameter free models for dominant many-body effects. Although the RSGF approach has been widely used both for near edge (XANES) and extended (EXAFS) ranges, previous implementations relied on semi-phenomenological methods, e.g., the plasmon-pole model for the self-energy, the final-state rule for screened core hole effects, and the correlated Debye model for vibrational damping. Here we describe how these approximations can be replaced by efficient ab initio models including a many-pole model of the self-energy, inelastic losses and multiple-electron excitations; a linear response approach for the core hole; and a Lanczos approach for Debye-Waller effects. We also discuss the implementation of these models and software improvements within the FEFF9 code, together with a number of examples.

PMID:
20445945
DOI:
10.1039/b926434e
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center