Format

Send to

Choose Destination
Cancer Chemother Pharmacol. 2011 Feb;67(2):421-30. doi: 10.1007/s00280-010-1337-6. Epub 2010 May 5.

Plasma pharmacokinetics and oral bioavailability of the 3,4,5,6-tetrahydrouridine (THU) prodrug, triacetyl-THU (taTHU), in mice.

Author information

1
Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh Cancer Institute, Hillman Research Pavilion, Room G27D, 5117 Centre Avenue, Pittsburgh, PA 5213-1863, USA. beumerjh@upmc.edu

Abstract

PURPOSE:

Cytidine drugs, such as gemcitabine, undergo rapid catabolism and inactivation by cytidine deaminase (CD). 3,4,5,6-tetrahydrouridine (THU), a potent CD inhibitor, has been applied preclinically and clinically as a modulator of cytidine analogue metabolism. However, THU is only 20% orally bioavailable, which limits its preclinical evaluation and clinical use. Therefore, we characterized THU pharmacokinetics after the administration to mice of the more lipophilic pro-drug triacetyl-THU (taTHU).

METHODS:

Mice were dosed with 150 mg/kg taTHU i.v. or p.o. Plasma and urine THU concentrations were quantitated with a validated LC-MS/MS assay. Plasma and urine pharmacokinetic parameters were calculated non-compartmentally and compartmentally.

RESULTS:

taTHU did not inhibit CD. THU, after 150 mg/kg taTHU i.v., had a 235-min terminal half-life and produced plasma THU concentrations >1 μg/mL, the concentration shown to inhibit CD, for 10 h. Renal excretion accounted for 40-55% of the i.v. taTHU dose, 6-12% of the p.o. taTHU dose. A two-compartment model of taTHU generating THU fitted the i.v. taTHU data best. taTHU, at 150 mg/kg p.o., produced a concentration versus time profile with a plateau of approximately 10 μg/mL from 0.5-2 h, followed by a decline with a 122-min half-life. Approximately 68% of i.v. taTHU is converted to THU. Approximately 30% of p.o. taTHU reaches the systemic circulation as THU.

CONCLUSIONS:

The availability of THU after p.o. taTHU is 30%, when compared to the 20% achieved with p.o. THU. These data will support the clinical studies of taTHU.

PMID:
20443002
PMCID:
PMC2954253
DOI:
10.1007/s00280-010-1337-6
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center