Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Microbiol. 2010 Oct;12(10):1421-34. doi: 10.1111/j.1462-5822.2010.01479.x.

The fungal pathogen Cochliobolus heterostrophus responds to maize phenolics: novel small molecule signals in a plant-fungal interaction.

Author information

1
Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.

Abstract

The transcription factor ChAP1 of the fungal pathogen of maize, Cochliobolus heterostrophus, responds to oxidative stress by migration to the nucleus and activation of antioxidant genes. Phenolic and related compounds found naturally in the host also trigger nuclear localization of ChAP1, but only slight upregulation of some antioxidant genes. ChAP1 thus senses phenolic compounds without triggering a strong antioxidant response. We therefore searched for genes whose expression is regulated by phenolic compounds and/or ChAP1. The C. heterostrophus genome contains a cluster of genes for metabolism of phenolics. One such gene, catechol dioxygenase CCHD1, was induced at least 10-fold by caffeic and coumaric acids. At high phenolic concentrations (≥ 1.6 mM), ChAP1 is needed for maximum CCHD1 expression. At micromolar levels of phenolics CCHD1 is as strongly induced in chap1 mutants as in the wild type. The pathogen thus detects phenolics by at least two signalling pathways: one causing nuclear retention of ChAP1, and another triggering induction of CCHD1 expression. The low concentrations required for induction of CCHD1 indicate fungal receptors for plant phenolics. Symbiotic and pathogenic bacteria are known to detect phenolics, and our findings generalize this to a eukaryotic pathogen. Phenolics and related compounds thus provide a ubiquitous plant-derived signal.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center