Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2010 Jun 25;285(26):20171-9. doi: 10.1074/jbc.M110.106849. Epub 2010 Apr 26.

Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework.

Author information

1
Division of Cell Biology, Department of Clinical and Experimental Medicine, Laboratory of Diabetes and Integrated Systems Biology, Linköping University, SE58185 Linköping, Sweden.

Abstract

Insulin and other hormones control target cells through a network of signal-mediating molecules. Such networks are extremely complex due to multiple feedback loops in combination with redundancy, shared signal mediators, and cross-talk between signal pathways. We present a novel framework that integrates experimental work and mathematical modeling to quantitatively characterize the role and relation between co-existing submechanisms in complex signaling networks. The approach is independent of knowing or uniquely estimating model parameters because it only relies on (i) rejections and (ii) core predictions (uniquely identified properties in unidentifiable models). The power of our approach is demonstrated through numerous iterations between experiments, model-based data analyses, and theoretical predictions to characterize the relative role of co-existing feedbacks governing insulin signaling. We examined phosphorylation of the insulin receptor and insulin receptor substrate-1 and endocytosis of the receptor in response to various different experimental perturbations in primary human adipocytes. The analysis revealed that receptor endocytosis is necessary for two identified feedback mechanisms involving mass and information transfer, respectively. Experimental findings indicate that interfering with the feedback may substantially increase overall signaling strength, suggesting novel therapeutic targets for insulin resistance and type 2 diabetes. Because the central observations are present in other signaling networks, our results may indicate a general mechanism in hormonal control.

PMID:
20421297
PMCID:
PMC2888430
DOI:
10.1074/jbc.M110.106849
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center