Format

Send to

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2010 Jun 18;584(12):2526-38. doi: 10.1016/j.febslet.2010.04.044. Epub 2010 Apr 22.

Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation.

Author information

  • 1Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, MD 21205-2185, USA.

Abstract

Ser(Thr)-O-linked beta-N-acetylglucosamine (O-GlcNAc) is a ubiquitous modification of nucleocytoplasmic proteins. Extensive crosstalk exists between O-GlcNAcylation and phosphorylation, which regulates signaling in response to nutrients/stress. The development of novel O-GlcNAc detection and enrichment methods has improved our understanding of O-GlcNAc functions. Mass spectrometry has revealed O-GlcNAc's many interactions with phosphorylation-mediated signaling. However, mechanisms regulating O-GlcNAcylation and phosphorylation are quite different. Phosphorylation is catalyzed by hundreds of distinct kinases. In contrast, in mammals, uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyl transferase (OGT) and beta-D-N-acetylglucosaminidase (OGA) are encoded by single highly conserved genes. Both OGT's and OGA's specificities are determined by their transient associations with many other proteins to create a multitude of specific holoenzymes. The extensive crosstalk between O-GlcNAcylation and phosphorylation represents a new paradigm for cellular signaling.

PMID:
20417205
DOI:
10.1016/j.febslet.2010.04.044
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center